

Date: Monday, December 7th 2015 / 4h00 - 6h00 pm Address: Tour Eqho | 2, avenue Gambetta CS 60055, 92066 PARIS LA DEFENSE Cedex

Side Event COP 21: how cities can help to achieve Intended Nationally Determined Contributions, INDCs?

Dr^a. Suzana Kahn Professor COPPE/UFRJ Green Fund Coordinator President of the Brazilian Panel on Climate Change Scientific Committee

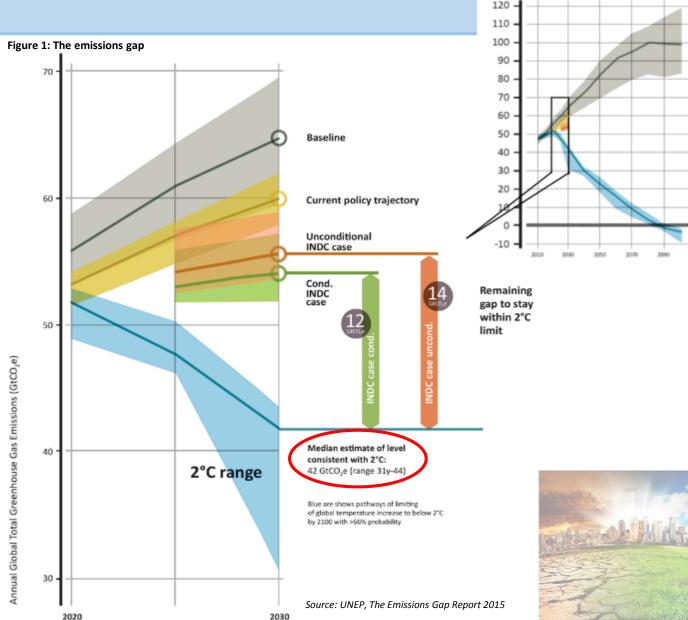
Climate Context

- CO₂ as main GHG;
- GHG emissions growth 49 GtCO₂eq/year in 2010 (highest in history)
- 80% of emission increase is due to fossil fuel.
- The annual emissions are greater than the level consistent with the objective of 2°C at the end of the century (estimated 50 GtCO₂eq base year 2010), i.e. 20% more than in 2000.
- Countries presented their pledges but there is much doubt about compliance. If they meet what they promised the gap will be 12 GtCO₂eq in 2030.
- In other words: There is a gap of 12 GtCO₂eq by 2030, to bring emissions to 42 GtCO₂eq. The expectation is that we are in 2030 with an emission of 54 GtCO₂eq.

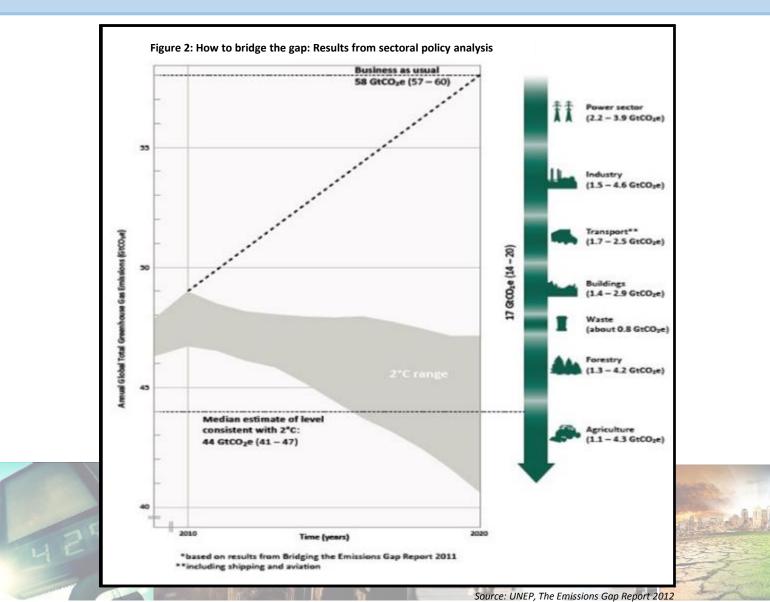
INDCs & Emissions Gap 2015

- **119** Intended Nationally Determined Contributions **(INDCs)** submitted to the UNFCCC Secretariat by the 1st of October 2015.
- The submitted INDCs reduce the global GHG emission level by around
 7.3 GtCO₂e compared to current policy projected levels.

BUT ...


• Mitigation efforts of INDCs are insufficient for keeping global average surface temperatures below 2 C.

There is a **gap** between mitigation pledges and the necessary GHG emissions reduction by 2100.



Annual Global Total Greenhouse Gas Emissions (GtCO₂e)

How reduce this Gap?

Brazilian INDC

- Brazil's INDC has a broad scope including mitigation, adaptation and means of implementation consistent with the contributions' purpose to achieve the ultimate objective of the convention.
- Intended contribution:
 - **Reducing GHG emissions by 37% below 2005 levels in 2025.**
 - **Reducing GHG emissions by 43% below 2005 levels in 2030.**
- The Brazilian contribution builds on the emission reduction results from the last decade, mainly due to the 80% reduction of deforestation in the Amazon, together with the expansion measures on the areas of renewable energy, energy efficiency and sustainable agriculture.

The Importance of Cities

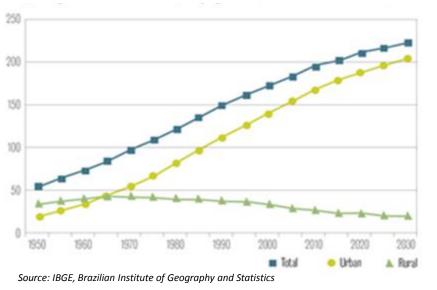
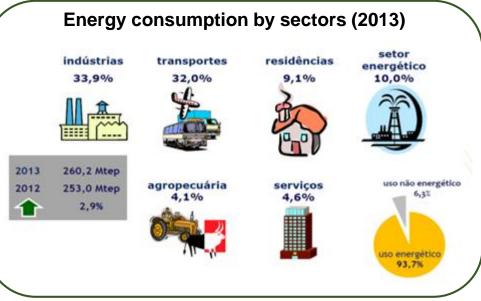



Figure 3: Brazilian population and projections (in millions of inhabitants)

Figure 4: Energy consumption by sectors (2013)

Source: EPE, National energy balance report 2014

The Potential Contribution of Cities to Mitigation Measures

- Urbanization is a global trend transforming societies and energy use. By 1900 the global population was 1.6 billion and only 13% of this population were living in urban areas (about 200 million). Today more than half of the world's population (3.6 billion) are living in cities. By 2050 the urban population is expected to grow to 5.6-7.1 billion, it means 64-69% of the world's population.
- Cities consume more than half of the world's primary energy with corresponding CO₂ emissions. The precise contribution of cities in energy consumption and CO₂ emissions vary with the method of account.
 - > 67-76% of global energy consumption
 - > 71-76% of CO2 related emissions
 - 44% of emissions

The Role of Brazilian Cities

- Although Brazil has already made strides in reducing emissions from deforestation and integrating renewables in the power supply, there is room for Brazilian cities to take action and enhance mitigation ambition, particularly in the buildings, transportation and waste sectors.
- In addition to reducing GHG emissions, city action on climate change improves the air quality, catalyzes economic development, and promotes advances on social outcomes.

The Role of Brazilian Cities

- Urban abatement is critical to reducing emission in Brazil over the long term. The national actions of reducing deforestation and clean energy generation have produced laudable near-term reductions; moving forward, cities can enhance the national climate strategy.
- Cities need support to maximize the effectiveness of their actions. Examples of national policies to support urban action include carbon pricing and support for distributed renewable energy production in urban areas by permitting integration into the national grid.

The Role of Brazilian Cities

- The strongest tool Brazilian cities have for climate action is their political influence. This influence could be leveraged to strengthen the ambition of Brazil's national GHG emission reduction commitments.
- Cities have a responsibility to contribute to reduce emissions. Cities no longer have to choose between economic growth and emission reduction they can do both.

Rio de Janeiro City Example

Table 1: Annual GHG emissions of major Brazilian cities

City	Emissions	Year of inventory
São Paulo	15 Mt CO ₂ e	2009
Rio de Janeiro	22 Mt Co ₂ e	2012
Curitiba	3 Mt CO ₂ e	2008
Belo Horizonte	2 Mt CO ₂ e	2007

Source: Prefeitura de São Paulo (2014), Prefeitura do Rio de Janeiro (2013), Prefeitura Curitiba (2012), and Prefeitura de Belo Horizonte (2009).

Table 2: GHG emissions per sector in Rio de Janeiro, 2012

Sector	% of GHG emissions
Energy	73%
Waste	21%
Industries	4%
Agriculture & land use	2%

Source: Rio de Janeiro's Climate Change Plan.

420

Table 3: Potential energy-related GHG emission reductions (tCO₂e)

	=			
Measure	2016	2020	2025	
Reduced emissions/energy (fixed sources)	740	740	740	
Installation of LED traffic lights (32,000 units)	640	640	640	
My House, My Life project (1,000 units)	100	100	100	
Reduced emissions/energy (fugitive emissions)	17,000	11,400	11,400	
Replacement of gas network	17,000	11,400	11,400	
Reduced emissions/energy (mobile source)	525,00	529,700	530,400	
BRT – TransOeste (150,000 passengers/day)	15,500	19,200	19,300	
BRT – TransCarioca (380,000 passengers/day)	48,200	48,700	48,900	
BRT – 2nd phase TransCarioca (150,000 passengers/day)	19,000	19,200	19,300	
BRT – TransOlimpica (100,000 passengers/day)	12,700	12,800	12,900	
BRT- Transbrasil (900,000 passengers/day)	115,700	115,900	116,100	
BRS Copacabana	17,600	17,600	17,300	
Metro Jardim Oceanico (230,000 passengers/day)	85,500	85,500	85,500	
Metro – new higher-capacity cars (+550,000 passengers/day)	204,400	204,400	204,400	
Expansion of cycle path (300km)	640	640	640	
	542,74	541,84	542,54	

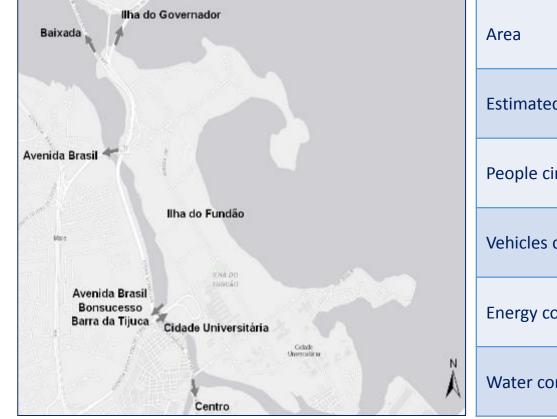
Source: Rio de Janeiro's Climate Change Plan.

Brazilian Cities Mitigation Potential

- Brazilian cities could achieve energy savings of 50% in new buildings and 30% in retrofits.
- Infrastructure improvements to transportation and decreased reliance on personal vehicles, are projected to reduce GHG emissions from road transport by 19.5 Mt CO₂e by 2020.
- National policy for solid waste will decrease waste generation, increase recycling and reuse, manage and dispose of solid waste properly and provide universal basic sanitation.

UFRJ Campus as a City Lab

- If we want to achieve a sustainable future, higher education institutions should provide the awareness, knowledge, skills and values which enable individuals to pursue life goals in a more sustainable way. (Cortes, 1999)
- Higher education institutions can be described as a "microcosm" of environmental problems which have been faced by the society in a range of ways.



UFRJ Campus as a City Lab

- The "Living Lab" is a living and permanent laboratory located within a delimited area (e.g. cities). This place concentrates all the technological developments and also allows partial transfer of these innovations for a real environment.
- In Europe the concept of living laboratory means the implementation of the so called "smart cities". The idea is to involve diverse stakeholders in the innovation process in order to exchange experiences and knowledge with the users in a real environment.

UFRJ Campus in Numbers

Area	5,2 km²	
Estimated population	60.000	
People circulation/day	100.000	
Vehicles circulation/day	25.000	
Energy consumption/year	70.000 MWh	
Water consumption/year	1.08 million m ³	

Green Fund

Aim:

Develop and financing projects in the infrastructure and energy fields. **Target:** Strengthen as if a *Benchmarking* in sustainability, innovation and cutting edge technology.

Space for creativity

Financing:

Fund made up by the exempt of an Cidade Universitária UFRJ campus energy consumption taxation (ICMS tax)

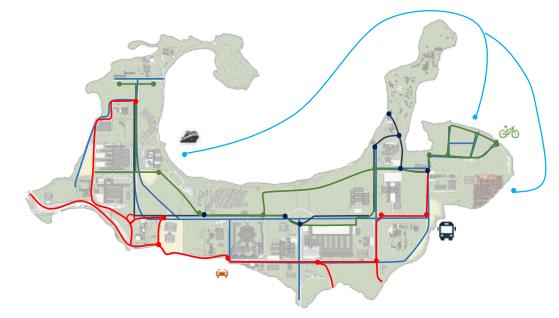
Management:

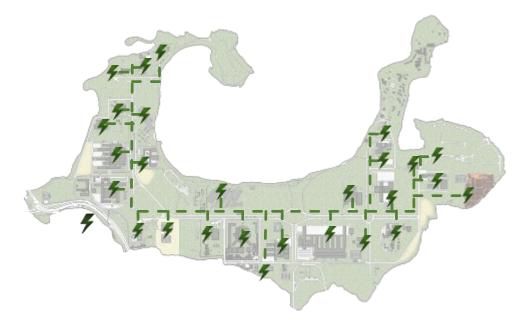
A council formed by public and private sector, plus researches with largely known in sustainability areas and universities administration.

Consumption and Emission Indicators: Data Virtualization

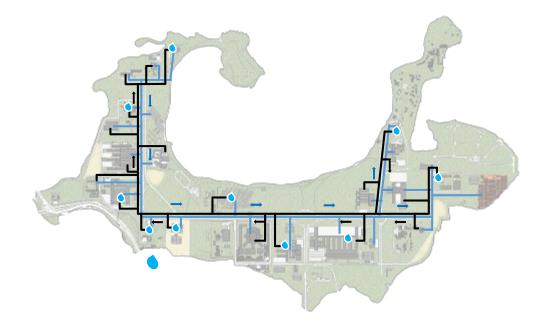
RED HAT JBOSS DATA VIRTUALIZATION

Registrado como tvUser


Página Inicial	Mobilidade:
Centros UFRJ	- Fluxo de veículos:
Indicadores	 Total de carros que entram no Fundão por dia e no período das 07h00min as 09h00min. Quantidade de carros que entram no Fundão por dia.
Água	 Quantidade de carros que entram, saem e os que permanecem no Fundão por hora nos últimos 30 dias.
Resíduos	Total de carros que permanecem no Fundão por dia. 2,99%
Energia	Quantidade de carros que utilizam o Fundão como passagem por dia.
Biodiversidade	- Frota de ônibus Circulares UFRJ:
Mobilidade	 Tempo de viagem por linha. Tempo de viagem médio por dia, por linha. Velocidade média do ônibus com distância entre os pontos de parada. Tempo de viagem médio entre os pontos de parada estratégicos. Tempo de viagem médio entre os pontos de parada estratégicos por dia. Tempo de viagem médio entre os horários de 7:00 as 9:00 e de 16:00 as 19:00.
	 Frota de carros oficiais UFRJ: Gasto por mês por carro da frota oficial por veículo. Custo de manutenção por mês por veículo. Valor gasto em combustível por mês por veículo. Consumo de combustível por mês por veículo. Total de Quilômetros percorridos por mês pela frota e por veículo. Quilometragem percorrida por Litro de combustível, por mês e por veículo.


Laboratory of Urban Mobility

- The UFRJ aims to implement a system integration between different modalities of transport.
- The connectivity will provide an agile internal mobility, efficient and less emissive.


Laboratory of Energy Consumption and Generation

- The UFRJ intends to implement clean energy technologies such as photovoltaic solar panels and also reducing the energy demand through "smart grid" and other energy efficiency measures.
- Consumption data will be monitored aiming at a continuous control of the energy consumption on campus.

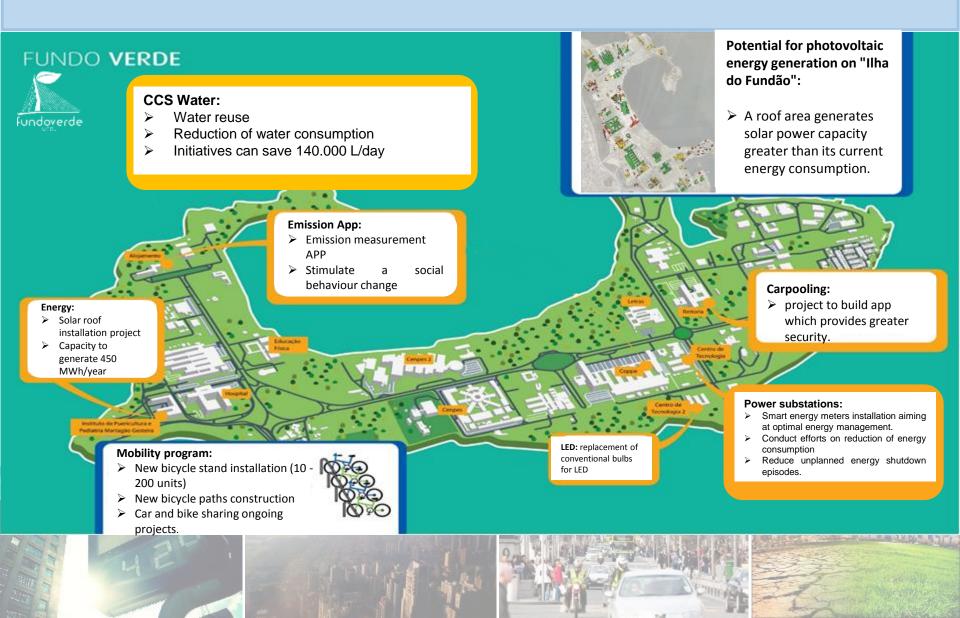
Laboratory of Sustainable Construction

- The UFRJ aims to promote a mindful use and recycling of water employing the use of "gray water" and rainwater drainage.
- In order to reduce the campus energy consumption, changes on the built environment will be implemented.
- The Laboratory of Sustainable Construction will produce building materials for construction work on the campus.

Benefits of using UFRJ Campus as Urban Lab

To become a pilot experience for performance evaluation of urban 1 technologies and practices through a system of sustainability monitoring on the campus. 2

Being a laboratory of new technologies and sustainable urban practices.



To promote an environmental awareness and highlight the importance of change on consumption patterns.

Replicate the initiatives in different urban areas.

University City: Living Lab

There is a major challenge in the near future to radically reduce the GHG emissions keeping global average surface temperatures below 2 C until the end of the century.

To achieve this target, there is an urgent need of an extensive portfolio for technology and mitigation policies, and particularly a transformation in consumption patterns.

